Number Theory
 P. Danziger

1 Quotient Remainder Theorem: Mod and Div

Theorem 1 (Quotient Remainder Theorem) Given $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^{+}$, there exists unique numbers q and r such that

$$
n=d q+r, \text { with } 0 \leq r<d .
$$

Definition 2

1. q is called the quotient of n with respect to d.
2. r is called the remainder of n with respect to d.
3. We define the function mod: $n \bmod d=r$.
4. We define the function div: n div $d=q$.

Notes:

- $n \bmod d$ always yields a number less than d
- $a \bmod n=b$, if and only if $n \mid(a-b)$
- The following are equivalent:

1. $d \mid n$,
2. $n \bmod d=0$,
3. $\exists m \in \mathbb{Z}$ such that $n=m \cdot d$.

- C and Java use $\%$ to denote mod, i.e. $a \% b$ means $a \bmod b$

Example 3

1. $7 \bmod 6=1$,
$12 \bmod 6=0$,
$1 \bmod 6=1$.
7 div $6=1$,
$12 \operatorname{div} 6=2$,
$1 \operatorname{div} 6=0$.
2. $12 \bmod 7=5$,
$34 \bmod 7=6$,
$28 \bmod 7=0$.
$12 \operatorname{div} 7=1$,
$34 \operatorname{div} 7=4$,
$28 \operatorname{div} 7=4$.
3. An array $a_{i j}(i=0$ to $m-1, j=0$ to $n-1)$ is stored in computer memory as a contiguous block of memory, that is a_{10} is in the next memory location after $a_{0 n}$.
Given that $a_{i j}$ is stored in memory location d places after a_{00}, find i and j. i.e. given d find i and j :
$i=d \operatorname{div} n$,
$j=d \bmod n$.
4. Two variables, a and b are defined in a computer program, both are 1 byte.

If $a=217$ and $b=126$ what is $a+b$?
$a+b=(217+126) \bmod 256=343 \bmod 256=89$
5. Suppose that the days of the week are represented by 0 - Sunday, 1 - Monday, 2 - Tuesday, 3 - Wednesday, 4 - Thursday, 5 - Friday.
Given that today is a Thursday what day of the week will it be in 342 days time? $342 \bmod 7=6$.
Today is $4,4+6 \bmod 7=3$. So in 342 days it will be a Wednesday.
In general $\operatorname{Day} N=(\operatorname{Day} T+N) \bmod 7$.
Where DayN is the day we wish to know about, and DayT is today.
Of course this algorithm does not take into account leap years.
6. Leap years occur according to the following algorithm, x is the year:
if $x \bmod 400=0$ then it is a leap year
else if $(x \bmod 4=0$ and $x \bmod 100 \neq 0)$ then it is a leap year
else it is not a leap year
When is the next leap year? When was the last leap year? Is 2000 a leap year? Was 1900 a leap year?

1.1 The Congruence Relation

Definition 4 Given a positive integer n, we define the relation, Congruence Modulo n from \mathbb{Z} to \mathbb{Z} by a is congruent to b modulo n if and only if $(a \bmod n)=(b \bmod n)$.

We write $a \equiv b(\bmod n)$ to indicate that a is congruent to b modulo n.
Symbolically: Given $n \in \mathbb{Z}$,

$$
\forall a, b \in \mathbb{Z}, a \equiv b(\bmod n) \Leftrightarrow a \bmod n=b \bmod n
$$

Notes

1. $a \bmod n$ is always an integer less than n, but the a and b in $a \equiv b(\bmod n)$ can be any integers.
2. $a \equiv b(\bmod n)$ if and only if $n \mid(a-b)$.

Example 5

1. Congruence modulo 6 , let $n=6$,

$$
1 \equiv 7(\bmod 6) \equiv 13(\bmod 6) \equiv 19(\bmod 6) \equiv 25
$$ $(\bmod 6) \equiv \ldots$

2. Congruence modulo 2 , take $n=2$.
$a=0 \bmod 2$ if and only if $a=2 m$ for some $m \in \mathbb{Z}$, i.e. a is even.
So all even numbers are congruent to each other modulo 2 .
$a=1 \bmod 2$ if and only if $a=2 m+1$ for some $m \in \mathbb{Z}$, i.e. a is odd.
So all odd numbers are congruent to each other modulo 2 .
3. Congruence modulo 4 , take $n=4$.

The members of the following sets are all congruent to each other modulo 4:

```
0(mod 4):
{x\in\mathbb{Z}|\existsm\in\mathbb{Z}\mathrm{ such that }x=4m}\quad= {\ldots,-12,-8,-4,0,4,8,12,\ldots},
1 (mod 4):
{x\in\mathbb{Z}|\existsm\in\mathbb{Z}\mathrm{ such that }x=4m+1}={\ldots,-11,-7,-3,1,5,9,13,\ldots},
2 (mod 4):
{x\in\mathbb{Z |\existsm\in\mathbb{Z}}\mathrm{ such that }x=4m+2}={\ldots,-10,-6,-2,2,6,10,14,\ldots},
3(mod 4):
{x\in\mathbb{Z}|\existsm\in\mathbb{Z}\mathrm{ such that }x=4m+3}={\ldots,-9,-5,-1,3,7,11,15,\ldots}.
```

Definition 6 Given n the set of numbers which are congruent to each other modulo n is called a congruence class modulo n.

The set of congruence classes for a given n are a partition of the integers.

1.2 Modular Arithmetic

Theorem 7 For any integers $a, b, c, d \in \mathbb{Z}$, if $a \equiv c(\bmod n)$ and $b \equiv d(\bmod n)$ then $a+b \equiv(c+d)$ $(\bmod n)$.

Proof:

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$
Suppose that $a \equiv c(\bmod n)$ and $b \equiv d(\bmod n)$. [We must show that $a+b \equiv c+d \bmod n$.]
Define $x, y \in \mathbb{Z}$ by $x=a \bmod n=c \bmod n$ and $y=b \bmod n=d \bmod n$.
Note $0 \leq x, y<n$ (QRT)
Then $(a+b) \bmod n=(x+y) \bmod n$ and $(c+d) \bmod n=(x+y) \bmod n$.
This theorem effectively says that $(a+b) \bmod n=(a \bmod n)+(b \bmod n)$
This allows us to define arithmetic "modulo n "

Example 8

Let $n=5.3+1=4 \bmod 53+2=0 \bmod 53+3=1 \bmod 5$ etc.
This theorem means that all the usual algebraic rules for addition and subtraction are inherited by modular arithmetic.

2 Division Into Cases

We wish to prove a statement of the form $\forall x \in S, P(x)$.
Suppose that $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is a partition of S. i.e. $A_{1} \cup A_{2} \cup \ldots \cup A_{n}=S$ and the A_{i} are mutually disjoint $\left(A_{i} \cap A_{j}=\phi\right.$ whenever $\left.i \neq j\right)$.
If we can prove $\forall x \in A_{1}, P(x) \wedge \forall x \in A_{2}, P(x) \wedge \ldots \wedge \forall x \in A_{n}, P(x)$ we have shown $\forall x \in S, P(x)$. This is called division into cases.

Lemma 9 If n is odd then $n \bmod 6=1,3$ or 5 .

To Prove: $\forall n \in \mathbb{Z}, n \bmod 6$ is 1,3 or 5 .

Proof:

Let $n \in \mathbb{Z}$ with n odd.
$\Rightarrow \exists k \in \mathbb{Z}$ such that $n=2 k+1$ (Definition of odd)
We consider the three cases of k modulo 3 :

$$
\begin{array}{rlr}
k \bmod & 3=0 & \\
\Rightarrow \exists j \in \mathbb{Z} \text { such that } k=3 j . & \text { (Definition of mod) } \\
\Rightarrow n=2(3 j)+1=6 j+1 & \text { (Substitution) } \\
\text { So } n \bmod 6=1 . & \text { (Definition of mod) }
\end{array}
$$

$k \bmod 3=1$
$\Rightarrow \exists j \in \mathbb{Z}$ such that $k=3 j+1$.
$\Rightarrow n=2(3 j+1)+1=6 j+3$
So $n \bmod 6=3$.
(Definition of mod)
(Substitution)
(Definition of mod)
$k \bmod 3=2$
$\Rightarrow \exists j \in \mathbb{Z}$ such that $k=3 j+2$. (Definition of mod)
$\Rightarrow n=2(3 j+2)+1=6 j+5 \quad$ (Substitution)
So $n \bmod 6=5$.
(Definition of mod)
Thus $n \bmod 6=1,3$ or 5
Theorem 10 If p is a prime greater than 3 , then $p \bmod 6=1$ or 3 .
To Prove $\forall p \in \mathbb{P}, p \neq 2 \wedge p \neq 3 \Rightarrow p \bmod 6=1$ or 3

Proof:

Let $p \in \mathbb{P}$ (p is prime), with $p \neq 2$ and $p \neq 3$.
Since p is a prime not equal to $2, p \neq 2$
(The only even prime is 2).
Thus $p \bmod 6=1,3$ or 5 .
(Previous Lemma)
We must show that $p \bmod 6 \neq 3$.
Suppose not, that is suppose that $p \bmod 6=3$.
$\Rightarrow \exists k \in \mathbb{Z}$ such that $p=6 k+3=3(2 k+1)$.
But $2 k+1 \in \mathbb{Z}$
So either p is not prime, or $2 k+1=1$.
But if $2 k+1=1$, then $k=0$ and hence $p=3$
(Definition of mod, Distribution)
(Closure)
(definition of prime)
This contradicts the assumption that p is prime and $p \neq 3$.
Thus $p \bmod 6 \neq 3$.
Theorem 11 The square of any integer is 0 or 1 modulo 4.
To Prove $\forall n \in \mathbb{Z}, n^{2} \bmod 4=0$ or 1 .

Proof:

Let $n \in \mathbb{Z}$
We consider the cases of n modulo 2 :
$n \bmod 2=0(n$ is even $)$
$\Rightarrow \exists k \in \mathbb{Z}$ such that $n=2 k \quad$ (Definition of mod)
$\Rightarrow n^{2}=4 k^{2}$. (Substitution)
$k^{2} \in \mathbb{Z}$
So $n^{2} \bmod 4=0 . \quad$ (Definition of $\left.\bmod \right)$
$n \bmod 2=1(n$ is odd $)$
$\Rightarrow \exists k \in \mathbb{Z}$ such that $n=2 k+1 \quad$ (Definition of mod)
$\Rightarrow n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=4\left(k^{2}+k\right)+1 \quad$ (Substitution, Distribution)
$\left(k^{2}+k\right) \in \mathbb{Z} \quad$ (Closure)
So $n^{2} \bmod 4=1$.
(Definition of mod)
Thus $n^{2} \bmod 4=0$ or 1 .
Division into cases is similar to the case statement in C or Java.

