
Department of Computer Science
Toronto Metropolitan University (TMU)

Planning as Reasoning in the Real World

October 17, 2024

Mikhail Soutchanski

Towards Planning in the Real World
Problem: How can a computer with its discrete actions achieve goals
in the real continuous world where not all objects are known?

Mixed discrete-continuous systems: instantaneous transitions
between states due to discrete actions and events, and within each
state there is a continuous change. States have relational structure:
go beyond hybrid automata.
In general, the planning problem is undecidable already for simple
hybrid automata. Develop sound algorithms that can compute
sometimes plans approximating optimization objectives.
Example of Hybrid Relational Systems: How to integrate Task and
Motion Planning (TAMP) in Robotics.

(1) Theorem proving (deductive) approach to lifted planning, where
search is done over situation tree, but not over the state space.

(2) Developed an efficient general deductive planner NEAT that uses a
new non-trivial domain independent heuristic.

(3) Our NEAT planner demonstrates competitive performance on
popular benchmarks from King’s College, London, UK (developed in
Maria Fox and Derek Long’s research group).

Why theorem proving approach to planning?

We consider a deductive approach to planning. This approach is
formulated in the Situation Calculus (SC) where the initial theory DS0

is in first order logic (FOL) and a goal can be a FOL formula.

This allows for representation of a broad class of planning problems.
I Can plan without the Domain Closure Assumption (DCA) that

restricts to finitely many C1, . . . ,Cn s.t. ∀x(x =C1 ∨ · · · ∨ x =Cn).
But objects can be unknown, created or destroyed at run-time.

I Can plan when actions and fluents have parameters that vary
over infinite domains, since search for a plan is done over the
situation tree, and situations serve as concise symbolic proxies
for infinite models. State is used only to compute heuristic.

I Can plan using action schemas and instantiates actions at
run-time (lifted planning), without building explicit state space in
advance. (Augusto Correa works on lifted classical planning)

Mixed Discrete-Continuous Systems: SC + Timeline
I Planner does search over sequences of actions (situations).
I Situations are convenient concise proxies for states. The state

space remains implicit, states are not saved in memory.
I Each action is instantaneous - situations have unique start time.
I Reiter’s book: start(S0) = 0 and start(do(A,S)) = time(A,T ).

Figure: Situations are aligned with moments on a time line: next situation
do(A,S) starts at the moment T when an action A is executed in S.



Hybrid Temporal Situation Calculus (HTSC)
I Our Non-linEAr Temporal (NEAT) planner is based on the

recently developed Hybrid Temporal Situation Calculus (HTSC).
I HTSC describes dynamics of a hybrid system in first-order logic

in terms of precondition and successor state axioms, + new
State Evolution Axioms (joint work with Giuseppe De Giacomo).

I We shall illustrate HTSC using the bouncing ball example.

Precondition Axioms for Actions (agent vs natural):
∀s∀t∀b. poss(drop(b, t), s)↔ ball(b) ∧ ¬falling(b, s)∧

¬flying(b, s) ∧ t ≥ start(s).

∀s∀t∀b. poss(bounce(b, t), s)↔ ball(b) ∧ falling(b, s)∧
distance(b, t , s)=0 ∧ velocity(b, t , s) ≥ ε ∧ t ≥ start(s).

Agent action catch(b, t) and natural action atPeak(b, t) are similar.

Use an external solver to deal with numerical constraints. At run-time,
add constraints to a store to be (repeatedly) evaluated whenever the
planner checks whether the goal logical conditions are satisfied.

Follows Constraint Logic Programming approach (CLP): developed
by Alain Colmerauer, Joxan Jaffar, Michael Maher, Peter Stuckey.

Atemporal (usual) Fluents Define Context
There are atemporal fluents that define a context for continuous change.

(1) falling(B,S) means the ball B is falling down and accelerating
under the Earth gravity (9.81m/s2).
(2) The atemporal fluent flying(B,S) means the ball B bounced, it is
flying up in situation S and decelerating.
(3) The last context: ball is at rest, i.e., it is neither falling nor flying.
Successor State Axioms for atemporal (usual) fluents:
(∀a∀s∀b). falling(b,do(a, s))↔ ∃t(a=drop(b, t)) ∨ ∃t(a=atPeak(b, t))∨

falling(b, s)) ∧ (¬∃t(a=catch(b, t)) ∧ ¬∃t(a=bounce(b, t))

(∀a∀s∀b). flying(b,do(a, s))↔ ∃t(a=bounce(b, t))∨
flying(b, s)) ∧ ¬∃t(a=catch(b, t)) ∧ ¬∃t(a=atPeak(b, t))

In a general case, a context expression is a boolean combination of
atemporal logical fluents. Numerical fluents in a context: future work.

There are finitely many (parameterized) contexts which are pairwise
mutually exclusive.

Inside each context, temporal fluents change in real physical time.

Temporal Fluents Change within Situation
To model continuously varying physical quantities, we introduce new
functional temporal fluents with time as an argument. Values of these
fluents change with time within situation.

(∀s∀t∀b). distance(b, t , s)=y ↔ ∃y0.y0= initdist(b, s) ∧
(¬falling(b, s) ∧ ¬flying(b, s) ∧ y = y0)∨(

falling(b, s) ∧ y = y0 −
∫ t

start(s)(9.81 · x) dx
)
∨

(
flying(b, s) ∧ y = y0 +

∫ t
start(s)(9.81 · x) dx

)
.

(∀s∀t∀b).velocity(b, t , s)=y ↔ ∃y0.y0= initvel(b, s) ∧
(¬falling(b, s) ∧ ¬flying(b, s) ∧ y =y0) ∨(

falling(b, s) ∧ y =y0 +
∫ t

start(s) 9.81dx
)
∨

(
flying(b, s) ∧ y =y0 −

∫ t
start(s) 9.81dx

)
.

Collect all (underlined) numerical constraints in a separate data
structure. Postpone evaluation until the planner checks if s is a goal.

Assume that the logical goal conditions and the numerical conditions
are properly aligned in each application domain, e.g., when the car
stops (reached a destination) its velocity must be 0.

Methodology: Planning in Logic + External NLP Solver

Objective (metric): reach a goal in minimal total time wrt constraints.
Numerical constraints are not handled by our planner directly. Collect
all the encountered numerical constraints in a data structure.

I A deductive lifted regression-based planner NEAT that does
heuristic planning over the situation tree (state space is implicit)

I Delegate Constraints + Objective to external Non-Linear
Programming solver (NLP). It computes moments of time when
the actions have to be executed. No ad-hoc distretization, the
optimal values of physical quantities are determined from NLP.

I Our greedy best first search (GBFS) planner is guided by a new
domain-independent heuristic: finds the most promising action
by relaxing the flow of underlying continuous processes.

I We did experimental evaluation wrt the state-of-the-art PDDL+
planners. NEAT’s performance is comparable or better on most
benchmarks except of Linear Generator (lots of symmetry).

I Solving a NLP on each step of planning was not a bottleneck.



Conclusion and Future Work

Our NEAT planner demonstrates performance that is comparable with
DiNo, SMTPlan+, ENHSP (the state-of-the-art of PDDL+ planning).

Future Work.
I Consider a broader class of hybrid systems where actions can

change logical fluents only, but have no effect on processes.
I Deal correctly with exogenous natural events: this requires

reasoning about hypothetical futures.
I Implement more efficient solving of closely related incremental

non-linear programming problems by using warm starts.
I Optimize constructed NLP, use GPUs
I Implement A* search (take costs into account) instead of GBFS.
I Prove that under certain conditions our planner is sound.

Acknowledgement: This is an ongoing joint work with Nick Kadovic,
Shaun Mathew and Ryan Young.
Invitation: Looking for collaborations, research partners.


