Performance Analysis of Cloud Centers under Burst
Arrivals and Total Rejection Policy

Hamzeh Khazaei
University of Manitoba, Winnipeg, Canada

Abstract—Quality of service, QoS, has a great impact on
wider adoption of cloud computing. Maintaining the QoS at
an acceptable level for cloud users requires an accurate and
well adapted performance analysis approach. In this paper, we
describe a new analytical model for performance evaluation of
cloud server farms under burst arrivals and solve it to obtain
important performance indicators such as mean request response
time, blocking probability, probability of immediate service and
probability distribution of number of tasks in the system. This
model allows cloud operators to tune the parameters such as the
number of servers and/or burst size, on one side, and the values
of blocking probability and probability that a task request will
obtain immediate service, on the other.

I. INTRODUCTION AND RELATED WORK

Cloud Computing is a computing paradigm in which differ-
ent computing resources such as infrastructure, platforms and
software applications are made accessible over the internet to
remote user as services [1].

Due to dynamic nature of cloud environments, diversity
of user’s requests and time dependency of load, providing
expected quality of service while avoiding over-provisioning is
not a simple task [2]. To ensure that the QoS perceived by end
clients is acceptable, the providers must exploit techniques and
mechanisms that guarantee a minimum level of QoS. Although
QoS has multiple aspects such as response time, throughput,
availability, reliability, and security, the primary aspect of QoS
considered in this work is related to response time [3].

In this paper we describe an analytical model for evaluating
the performance of cloud server farms under burst arrival and
verify its accuracy with numerical calculations and simula-
tions. We assume that a user may submit a burst of tasks all
together; we refer the whole burst as super-task in this context;
any super-task goes through a facility node and then leaves
the center. A facility node may contain different computing
resources such as web servers, database servers, directory
servers and others. We adopt the fotal rejection policy for both
admission and servicing; if there is enough room for whole
super-task then it will be accepted otherwise the super-task
will be lost. The same scenario is also adopted for servicing;
all tasks within super-task will get into service at the same
time; in other words, super-task will get into service if there
is enough idle server for whole tasks within the super-task.

We model the cloud environment as an M /G /m/m +
r queuing system which indicates that inter-arrival time of
super-tasks is exponentially distributed, the service time of
each task in super-tasks is generally distributed, the number

Jelena Misic
Ryerson University, Toronto, Canada Ryerson University, Toronto, Canada

Vojislav B. Misié

of facility nodes is m and the capacity of system is equal to
m++7; moreover the probability distribution of super-task size,
number of tasks within super-task, is also generally distributed.

These two characteristics, generally distributed service time
and large number of nodes, have not been adequately ad-
dressed in previous research [4]. To the best of our knowledge
there is no research on performance analysis of cloud centers
under burst arrival. In this paper we incorporate all the in-
evitable characteristics of a typical cloud center; burst arrival,
generally distributed service time, large number of servers and
finite capacity have been taken into account for performance
modelling.

Analysis in the case where either inter-arrival or service
times (or both) are not exponential is complex; incorporating
burst arrival makes the analysing even more complicated. It
is known that even for the simplest case, the M!®/M/m
queue, no closed-form results exist. As a result the prob-
ability distributions of response time and queue length in
M#! /G /m/m 4 r cannot be obtained in closed-form, which
necessitated the search for a suitable approximation.

An upper bound for the mean queue length and lower
bounds for the delay probabilities (that of an arrival burst and
that of an arbitrary task in the arrival burst) was described
in [5]. An approximate formula is also developed for the
general burst-arrival queue GI”/G/m. In spite of the sim-
plicity and acceptable performance, the approach is accurate
enough for small burst sizes, up to 3, as well as small number
of servers (less than 10). In [6], the authors proposed an
approximation method for the computation of the steady-state
distribution of the number of tasks in queue as well as the
moments of the waiting time distribution. They examined both
hypo-exponential and hyper-exponential distribution family for
service time, which is necessary for modelling a dynamic
system such as cloud farms; however they just performed
numerical results for a system with up to seven server and
there is no result or indication about the efficiency of the
method in case of larger number of servers or a system with
finite capacity. Another approximate formula was proposed
in [7]. The authors presented an approximate formula for
the steady-state average number of tasks in the M[*/G/m
queuing system. The derivation of the formula is based on
a heuristic argument whereby a reformulation of the number
of tasks in M®1/G/1 is extended to the multi-server queue.
From a computational viewpoint, the approach is simple to
apply, though, the relative percentage error incurred seem to

be unavoidable when the number of server is large, the mean
burst size is small or the coefficient of variation, CoV, defined
as the ratio of standard deviation to mean value, of service
time is bigger than one.

A diffusion approximation for an M/G/m queue with
burst arrival was developed in [8]. The authors derived an
approximate formula for the steady-state distribution of the
number of tasks in the system, delay probability and mean
queue length. Diffusion approach is totally inaccurate when
the burst size is relatively large (more than 3).

II. ANALYTICAL MODEL

We adopt M[*/G/m/m + r queuing system as the ab-
stract model for the performance analysing. Like our previous
work [4], we use Embedded Markov chain technique for
analysing the resulted system. We look into system at moment
of super-task arrival and find the steady-state distribution of
number of tasks in system at arrivals. Due to the absence
of PASTA [9], we then find the steady-state distribution of
number of tasks in system using Semi-Markov process at
arbitrary time.

Let g be the probability that the super-task size is equal
to k, k = {1,2,..., MBS} in which MBS is the Maximum
Burst Size that we assume for our system. Let g and G be
the mean value and Cumulative Distribution Function, CDF,
of X, respectively.

gr = ProbX,=k] k=1,2,..,MBS
k

> a ()

i=1

G(k) = Prob[X, < k] =
g = E[X,]

and here we set MBS as MBS = 2g + 1. Super-task request
arrivals follow a Poisson process so super-task request inter-
arrival time A is exponentially distributed with rate of % We
denote its CDF as A(z) = Prob[A < x] and its Probability
Density Function (pdf) as a(z) = \e . Laplace Stieltjes
Transform (LST) of inter-arrival time is

A*(s) = /0 () dr = —

A+s

Each task within super-task has a service times which iden-
tically and independently distributed according to a general
distribution B, with a mean service time equal to b= 1. The
CDF of the service time is B(z) = Prob[B < z], and its pdf
is b(x). The LST of service time is

B*(s) = /OOO e **b(z)dx

Residual task service time is the time interval from an
arbitrary point (an arrival point in a Poisson process) during
a service time to the end of the service time; we denote it as
B. . Elapsed task service time is the time interval from the
beginning of a service time to an arbitrary point of the service
time; we denote it as B_. It can be shown that probability
distribution of residual and elapsed task service times has

the same probability distribution and LST of them can be
calculated as [9]

1— B*(s)

sb

The traffic intensity may be defined as p = ;‘%. which for
practical reason we assume that p < 1. We consider total
rejection policies for admission and servicing [9]; that is at
the moment of super-task arrival if the system doesn’t have
enough room for whole super-task, the super-task would be
lost; and the service time of whole tasks in a super-task start
at the same time on different servers; in the other words, if
number of idle servers is less than super-task size then those
idle servers remain unused until other servers become free and
then the super-task can be fitted in servers. Here the waiting
time for the first, last and any arbitrary tasks in a super-task
is identical because all of them get into service at the same
time.

Bi(s) = BZ(s) 2

A. The Markov chain

We are looking at the system at the moments of super-
task arrivals — these points are selected as Markov points. The
Markov chain of the system is shown in Fig. 1.

Pm-1,0

Fig. 1. Markov Chain of M[*1/G/m/m + r queuing system

Let A, and A, indicate the moment of n*" and (n+1)*"
arrivals to the system, respectively, while ¢,, and ¢, indicate
the number of tasks found in the system immediately before
these arrivals; this is schematically shown in Fig.2. If k is
the size of super-task and v, indicates the number of tasks
which depart from the system between A,, and A, 41, then we
have: goy1 = qn — Vnt1 +k
We need to calculate the transition probabilities associated
with the Markov chain, defined as

P(i,j,k) £ Prob(gn+1 = jlgn =iand X, = k] (3)

i.e., the probability that ¢ + k — j customers are served during
the interval between two successive task request arrivals.

= =

A, Annt

3 Inter-arrival time of supertasks-

system
state

Gn Qn+1 time

—

Vy+1Tasks Serviced

— —

Fig. 2. Markov points for Ml /G /m/m + r queuing system

Obviously for j > i + k = P(i,j,k) = 0; since there are at
most 7 + k tasks present between the arrival of A,, and A4,,4;.
The Markov state-transition-probability diagram is shown in
Fig. 1, where states are numbered according to the number
of tasks currently in the system (i.e., those in service and
those awaiting service). For clarity, some transitions are not
fully drawn. We have also highlighted the state m because the
transition probabilities are different for states on the above and
right hand side of this state.

B. Departure Probabilities

To find the elements of the transition probability matrix, we
need to count the number of tasks departing from the system in
between two successive arrivals. Each server has zero or more
departures during the time between two successive super-task
arrivals (the inter-arrival time). Let us focus on an arbitrary
server; for a task to finish and depart from the system during
the inter-arrival time, its remaining duration (residual service
time defined in (2)) must be shorter than the task inter-arrival
time. This probability will be denoted as

o

P, = Prob[A > By] =

([

oo
/)\e_’\ydy> dB, (z)
gOO y=x

:/0 e dB(z) = BL()\)

“)
In the case when arriving super-task can be accommodated
immediately by idle servers (and therefore queue length is
zero) we have to evaluate the probability that such task will
depart before next super-task arrival. We will denote this
probability as P, and calculate it as:

P, = Prob[A > B] = /OOOP{A > B|B = z }dB(xz)
-/ (

/)\eAydy> dB(x)
O:OO y=x
“(

- / e qB(z) = B*())
0

4)
However, if queue is non-empty upon super-task arrival, the
following may happen. If between two successive super-task
arrivals a completed task departs from a server, that server

along with other idle servers might take a new super-task from

j=0 jEmr
i=0
™ @)
PLL(ij k) PLH(i,j,k)
m
PHL(i,j,k) PHH(i,j,k)
i=mr m (m+r m+r)

Fig. 3.
equations.

One-step transition probability matrix: Range of validity for p;;

the non-empty queue. That task may be completed as well
before the next super-task arrival and if the queue is still non-
empty new task may be executed, and so on until either queue
gets empty or new super-task arrives. Therefore probability of
k > 0 job departures from a single server, given that there are
enough jobs in the queue can be derived from expressions (4)
and (5) as:

P,y = BL(\)(B*(\)",

Note that P, ; = P;.
Using these values we are able to compute the transition
probabilities matrix.

O<k<m-+r (6)

C. Transition Matrix

Based on our Markov chain, and servicing policy we may
identify four different regions of operation for which different
conditions hold; these regions are schematically shown in
Fig. 3 as one-step transition probability matrix. The numbers
on rows and columns correspond to the number of tasks in
the system immediately before a super-task arrival (i) and
immediately upon the next super-task arrival (j), respectively.
We also have £ in transition probability which indicate the
size of super-task.

1) Transition Probabilities:

« Regarding the region labelled 1, the transitions originate
and terminate on the left hand side of state m indicating
that queue is empty. for i, 7 < m we have:

Prp(i,j, k) =

min(i,i+k—j) ; -
> ()ra-ry—
z=0 z
(o)P (= Py, itk <m
min(i,i+k—j) ; 4
> (ea-rr
z=i+k—m AZ)
(i-Hcfj—z)PZ(?;kiJiZ)(l - PZ,Q)(Z_H_j)y if i + k>m
(7)

o In Region 2, the transitions originate from the left hand
side of state m and then fall into the right hand side

of state m. In other words, at starting state the queue is
empty while at the ending state the queue is not empty. In
this case the arriving super-task cannot be accommodated

in the idle servers so it will be queued.
Pru(i g k) = (i h_) PETE 0 (1= Py)ik
fori <m,j>m

®)

« Region 3 corresponds to the case where the queue is not
empty throughout the inter-arrival time, i.e., 7,5 > m.
Let us denote the number of jobs which depart from the
system between these two Markov points as w(k) = +
k — j. We also define the probability P,(t, k) that is the
probability of having k active server out of ¢ server.(note
that in total rejection policy we may have some idle server
even thought the queue is not empty).

G(MBS) — G(t — k), k<t
t—1
Paltk) =9 1 - 3 Put,z), k=t ©

z=maxz(0,t—MBS+1)

In this case no transition starts or ends at a state below m in
Fig. 1, and the state transition probabilities can be computed
for i,5 > m as:

m

>

Yp=(m—MBS+1)

min (w(k),y) d}
> (>P§1<1Px)<w81>-

s1=min(w(k),1) 51

PHH(ivjak): Pa(maw)'

(10)

min(a,w(k)—s1)

>

so=min(w(k)—s1,

<Q>P‘:’22(1 - Pz,g)(a_sg)-
1 \52

?)Pﬁg)(l _ Pz73)(82_m
a=m—9+s &p=wlk)— s — s

Note that under moderate load it is not likely to have more
than a couple of task departures from a single server.

o Finally, region 4, in which 7 > m and j < m, describes
the situation where the first arrival (A,,) finds non-empty
queue which it joins while at the time of the next arrival
(A 41) there are j tasks in the system, all of which are
in service and the system has at least one idle server. The
transition probabilities for this region, ¢ > m, 7 < m are

PHL(iaj7k): Pa(mv/(/))'

>

Y=(m—MBS+1)

min (w(k),y) 1,[)
> < >P51<1Px)<w81>-
s1=min(w(k),—7) 51

(11

min(a,w

(k)—s1) o
> (s >P§,22(1 — P, 5)7"2).

so=min(w(k)—s1,%—7) ?
?)Pﬁs(l — P,)70
a=m—v¢+siandf=w(k) —s1 — s

Q Embedded Markov chain T
4 Number of tasks in Departure

System

~~~~~ Embedded Semi-Makov process

—— Original Markov process

T Arrival (super-task)

» Time

IR

T

Fig. 4. Original Markov process, semi-Markov process and embedded
Markov chain.

III. EQUILIBRIUM BALANCE EQUATIONS
After finding matrix P we can establish the balance equa-
tions. The balance equations are:
m—+r
T, = Z?ijji, 0<:<m-+r
=0

(12)

and augmented by the normalization equation Z?:gr o=
1. So far we have m + r + 2 equations which includes
m + r + 1 linearly independent equations from (12) and
one normalization equation; however we have m + r + 1
variables [mg, 71,72, ..., Tm+r]; SO in order to obtain the
unique equilibrium solution we need to remove one of the
equations; the wise choice would be the last equation in (12)
due to minimum information this equation holds about the
system in comparison with the others. Here, the steady state
balance equations can’t be solved in closed form, hence we
must resort to a numerical solution.

A. Distribution of Number of Tasks in the System

Once we obtain the steady state probabilities we are able
to establish the probability generating functions (PGFs) for
the number of tasks in the system at the time of a super-task
arrival: I1(z) = >} 7. 2". Due to burst arrival, the PASTA
property doesn’t hold; thus, the distribution of number of tasks
in system at arrival times is not the same with distribution of
number of tasks in system at any arbitrary time.

B. Steady-state Distribution at any Arbitrary Time

In order to obtain steady-state distribution of number of
tasks at arbitrary time, we employ semi-Markov process [9].
A semi-Markov process imitates the original Markov process
but it will be updated just at the Markov points; in other
words, the value of semi-Markov process remains constant
from one Markov point to the next. Fig. 4 plots original
Markov process, semi-Markov process and imbedded Markov
chain of our system. Let Hy(x) be the CDF of the residence
time that the semi-Markov process is in state k:

Hy(z) 2 Probltys1 —t, <z|q, =kl =1—¢

for k=0,1,2,...m+r (13)



which in our system does not depend on n. The mean
residence time in state k is
o0
hy = / [1— Hy(z)|dx = 1 E=0,1,2,...m+7r (14)
0

then the steady-state distribution in the semi-Markov process
is given by [9]

mehe T
Zm-ﬁ-r E - )\Zm-i-r ‘1/)\
j=0 Tjltj j=0 Tj

where {m;; k = 0,1, ...,m + r} is the distribution of the

embedded Markov chain. so the steady-state probability of

semi-Markov process is identical with the embedded Markov

chain. Now we define the the CDF for the time back to the

most recent Markov point looking form an arbitrary time by
1

H, (y) = hk/oy[l—Hk.(a:)]da: k=0,1,2,....m+r (16)

" = =m (15

The arbitrary-time distribution is given by

m-+r

bi = Z P;m
j=i

/ Prob[moving from j to i during y | dH; (y) = (17)
0 m—r
=Y mP(j,i,0)
j=i
The PGF of the number of tasks in system is given by
m—+r )
P(z) =Y piz' (18)
i=0
Mean number of tasks in the system, then, obtained as:
p=P(1) (19)

C. Blocking Probability and Mean Response Time

Since arrivals are independent of buffer state and the distri-
bution of number of tasks in the system was obtained, we are
able to directly calculate the blocking probability of a super-
task in the system with buffer size of r:

MBS—1 [MBS
Po= > > pmirin(1=G())| - Pa(m,m— k)

k=0 Li=0
(20)
The appropriate buffer size, r., in order to have the blocking
probability below the certain value, e, is:

re = min{r >0| P, <€} 21
The effective arrival rate to the system can be calculated as
Ae = (1 — Py)Ag. By Little’s law, the mean response time is

obtained as:

I
I

(22)

&=

D. Probability of Immediate Service

Here we are interested in the probability with that super-
tasks will get into service immediately upon arrival, without
any queueing. For such super-tasks, the response time would
be equal to the service time:

MBS—1

P, = Z P,(m,m — k)

k=0
m—k—MBS

D

Jj=0

(23)

m—k—1

D

i=m—k—MBS+1

Py + piG(m—k—i)

IV. NUMERICAL VALIDATION

The resulting balance equations of analytical model have
been solved using Maple 13 from Maplesoft, Inc. [10]. To
validate the analytical solution, we have built a discrete event
simulator of the cloud server farm using object-oriented Petri
net-based simulation engine Artifex by RSoftDesign, Inc. [11].

We have performed two experiments for the system with
different burst sizes; different configurations of system,
M9®) /G/100/150 with traffic intensity of p = 0.85 and
CoV = 0.5, 1.4 respectively, have been examined. The
probability distribution of task service time is assumed to be
Gamma and the burst size’s one is assumed to be Geometric
with the mean burst sizes of x=1,2,4,6 and 8.

Gamma distribution is selected for task service time since
the C'oV of Gamma distribution could be set independently of
mean; this issue is important to us because we are interested
to analyse the behaviour of system with a hyper-exponential
service time, C'oV =1.4, as well as a hypo-exponential service
time, C'oV =0.5.

First we present mean number of tasks in the system and
the results are presented in Fig. 5. As can be seen mean
number of tasks in the system decreases smoothly while the
burst size is getting larger. In case of large burst, some space
in the system will remain unused; so the number of tasks
in system decreases as burst size becomes larger. We have

1004

0 AM-CoV=0.5
— = Sim-CoV=0.5
%  AM-CoV=1.4
Sim-CoV=1.4

90

Mean No. of Tasks in System

70

Burst Size
Fig. 5. Mean Number in System, M9(*) /G//100/150, p = 0.85.

also computed the blocking probability and the probability of
immediate service for all burst sizes. Blocking probabilities for
system with different CoV are shown in Fig. 6. Results confirm



0.094
0 AM-CoV=0.5
0.084 — = Sim-CoV=0.5
*  AM-CoV=14
0.074 Sim-CoV=1.4
£.0.064 A
=
£0.054
IS
[
20,044 N
3
) O
= 0.03
e .
-
0.02 .
~
B
0.014 7
.87
0 — T T T T
1 2 3 4 5 6 7 8
Burst Size

Fig. 6. Blocking Probability, M9(*) /G'/100/150, p = 0.85.

that if the burst size increased linearly the blocking probability
would also increase accordingly. Since the percentage of tasks
which can get immediately into service is an important non-
functional service property in SLA, we also demonstrate the
probability of immediate service. As the Fig. 7 shows, like
blocking probability, the increasing of burst size will decrease
the probability of immediate into service linearly. Because of

N 0 AM-CoV=0.5
0.9\ — = Sim-CoV=0.5
*  AM-CoV=1.4
Sim-CoV=1.4
3 0.8
5
%3
2
B
3 07
kS
*
0.6
0.5% T T T T T T T
1 2 3 4 5 6 7 8
Burst Size

Fig. 7. Immediate into Service, M9(*) /G/100/150, p = 0.85.

the total rejection policy, the big bursts will remain in the
queue until all the required servers become idle; consequently
the bigger the burst size is resulted in the longer the response
time. Fig. 8 depicts the trend of response time while the burst
size is changed.

As a general result, it can be seen that for cloud providers,
maintaining SLAs is more difficult in case of having hyper-
exponential distribution, C'oV = 1.4, for service time. One
potential way for reducing the risk of SLA violation could
be the classification of task requests into different classes and
taking care of them in separated queues; in such a scenario the
distribution of task’s service time would be a kind of hypo-
exponential family (those with CoV less than one); provided
that as our result shows (results for CoV = 0.5) supporting of
SLA would be an easier task for cloud providers.

2.3
v
g
S
£
)
5
=
3
B
3 1.9
= O AM-CoV=0.5
—-— Sim-CoV=0.5
1.81 x  AM-CoV=1.4
Sim-CoV=1.4
l'7-I T T T T T T T
1 2 3 4 5 6 7 8

Burst Size

Fig. 8. Response Time in Queue, M9(*) /G/100/150, p = 0.85.

V. CONCLUSIONS

Maintaining the QoS at an acceptable level is of great
importance aspect of cloud computing which is of crucial
interest for both cloud providers and customers. According to
our best knowledge, this paper is the first proposed analytical
model for performance evaluation of a cloud computing center
under burst arrival with total rejection policy. Due to the nature
of the cloud environment, we assumed generally distributed
service time for each task within super-tasks as well as large
number of servers. We have further conducted numerical ex-
periments and simulation to validate our model. Numerical and
simulation results showed that the proposed method provided
a quite accurate computation of the mean number of tasks in
the system, mean response time, blocking probability and the
probability of immediate service under burst arrival and total
rejection policy for both admission and servicing.

REFERENCES

[1] L. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: towards a cloud definition,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 1, 2009.

[2] K. Xiong and H. Perros, “Service performance and analysis in cloud
computing,” in Proceedings of the 2009 Congress on Services - I, 2009,
pp- 693-700.

[3] L. Wang, G. V. Laszewski, A. Younge, X. He, M. Kunze, J. Tao,
and C. Fu, “Cloud computing: a perspective study,” New Generation
Computing, vol. 28, pp. 137-146, 2010.

[4] H. Khazaei, J. MiSi¢, and V. B. Misi¢, “Modelling of cloud computing
centers using M/G/m queues,” The first international workshop on Data
Center Performance, March 2011.

[5] D. D. Yao, “Some results for the queues M*/M/c and GI*/G /¢,
Operations Research Letters, vol. 4, no. 2, pp. 79-83, 1985.

[6] A. Federgruen and L. Green, “An M/G/c queue in which the number
of servers required is random,” Journal of Applied Probability, vol. 21,
no. 3, pp. 583-601, 1984.

[7]1 G. P. Cosmetatos, “Some practical considerations on multi-server queues
with multiple poisson arrivals,” Omega, vol. 6, no. 5, pp. 443-448, 1978.

[8] T. Kimura and T. Ohsone, “A diffusion approximation for an M/G/m
queue with group arrivals,” Management Science, vol. 30, no. 3, pp.
381-388, 1984.

[9] H. Takagi, Queueing Analysis. ~Amsterdam, The Netherlands: North-

Holland, 1993, vol. 2: Finite Systems.

Maplesoft, Inc., Maple 13, Waterloo, ON, Canada, 2009.

RSoft Design, Artifex v.4.4.2. San Jose, CA: RSoft Design Group, Inc.,

2003.

[10]
(1]



