
CPS710 JAVACC SCANNING 1

PROGRAM STRUCTURE AND INVOCATION

• HL.jj file contains scanner and parser specifications for language HL

• TestHL.java file contains the main program to use with the scanner and

parser.

• Compilation:

1) javacc HL.jj

This produces

− HL.java: parser for HL

− HLTokenManager.java: scanner for HL

− HLConstants.java: constants for the scanner: Token definitions and the

strings that they match

− Token.java: definition of token class

− SimpleCharStream.java: I/O buffering

− TokenMgrError.java: scanning error class (extension of class Error)

− ParseException.java: parse exception class (extension of class

Exception)

2) javac *.java

To compile all the .java files

• Running the program

3) java –classpath . TestHL

CPS710 JAVACC SCANNING 2

STRUCTURE OF JAVACC FILE (.jj extension)

//--

// JavaCC options for the parser and scanner

// run javacc on the command line to get list of options

options {

 IGNORE_CASE=false;

 DEBUG _TOKEN_MANAGER=false;

}

//--

// Parser section

PARSER_BEGIN(HL) // The parameter is your language name

public class HL { // The class name is your language name

// Additional Java variables and methods for the parser

}

PARSER_END(HL)

//--

// Scanner section

TOKEN_MGR_DECLS :

{

 // Additional Java variables and methods for the scanner

}

SKIP : // Characters that should be skipped by scanner

{

 " " | "\t" | "\n" | "\r"

}

TOKEN : // Token definitions

{

 < ELSE: "else">

| < FOR: "for">

}

CPS710 JAVACC SCANNING 3

JAVACC SCANNER COMMANDS

Syntax

Element in italics are optional

<state> action : {

 matching-expression

| matching- expression

…

| matching- expression

}

Where a matching expression is:

< #token-name : regular-expression > { java-code } : new-state

States

• Users can manually add (meta)states to the FSA. This is used to specify

that the scanner should behave differently when it is in a different

(meta)state, for example to scan strings and comments.

• This is optional

• The default state is <DEFAULT> it does not need to be specified but it can

be.

• The state qualifier in front of an action means that the action will only be

executed in that state.

Scanner Actions

• SKIP: skips the regular expression

• TOKEN: defines a token

• SPECIAL_TOKEN: defines a special token which is not parsed but

accessed by a different process (used for separate parsing e.g. for JavaDoc

documentation)

• MORE: matches the beginning of a regular expression which will continue

to be matched in another command (the remainder of the regular expression

will be matched later).

CPS710 JAVACC SCANNING 4

#Token-name

• Is only necessary for TOKEN and SPECIAL_TOKEN actions.

• When the # is omitted, this defines a new token.

• When the # is included, this defines a regular expression that can be used

by other regular expressions as <token-name>

• (Note that these are all regular definitions)

Regular-expression

• Regular expression that should be matched

• Syntax:

 Elements and actions Example Matches

char Literal "a" "a"

 Character class ["a","b","c"] "a" or "b" or "c"

 Ranged character class ["a"-"z"] Any lowercase letter

 Negation ~["a"] Any single character other than a

string Concatenation “ab” “ab”

 Repetition ("a"){4} "aaaa"

 Repetition range ("a"){2,4) "aa" or "aaa" or "aaaa"

 Zero or 1 ("a")? Either 0 or 1 "a"

 Zero or more ("a")* Any number of "a"'s

 One or more ("a")+ At least one "a"

 Or “yes” | ”no” “yes” or “no”

Java-code

• Additional java code to be executed after matching the regular expression

New-state

• Manually switches to the state after executing java code

Conflict Resolution Rules

When more than one regular expressions matches the input, JavaCC uses two

rules to decide which regular expression to use:

1. Maximal Munch: JavaCC uses the regular expression which consumes the

largest amount of input data.

2. Order: If two regular expressions can match exactly the same string (of

same length) JavaCC uses the first one listed.

