
CPS710 JAVACC PARSING 1

JAVACC PARSER OPTIONS

The following JavaCC options may be useful for debugging your work:

 DEBUG_LOOKAHEAD =true;

 DEBUG_PARSER=true;

RUDIMENTS

• Upper and lower case reversed for terminals and non-terminals.

• All non-terminals are function calls.

• After Token definitions:

void non-terminal() :

 { declarations }

 { prod

 | prod

 | prod

 }

• Tokens: either <NAME> or "actual string" allowed

• Shorthands: | * + ? allowed (x)? = [x]

• productions:

{} /* nothing */

• Or-ed productions are tried in the order presented

• Example:

IF_STAT → "if" COND "then" STAT "else" STAT "end"

IF_STAT → "if" COND "then" STAT "end"

void if_stat() :

{}

{ "if" cond() "then" stat() "else" stat() "end"

| "if" cond() "then" stat() "end"

}

CPS710 JAVACC PARSING 2

LL ISSUES

Global Lookaheads

• Default: JavaCC assumes language is LL(1)

• Can be made LL(k) by setting global LOOKAHEAD(k) at top of file

− Unacceptable as previously discussed

Local Lookaheads

• Can use local lookahead specific to a specific point in a specific

production, called a decision point.

void S() :

{}

{ "a" "b" "c"

| "a" "d" "c"

}

Decision point right before first "a"

→ replace by:

void S() :

{}

{ LOOKAHEAD(2) "a" "b" "c"

| "a" "d" "c"

}

• Second Example:
void S() :

{}

{ "a" "b" "0"

| "a" "b" "1"

}

Solution 1 – no factoring
void S() :

{}

{ LOOKAHEAD(3)"a" "b" "0"

| "a" "b" "1"

}

Solution 2 – partial factoring
void S() :

{}

{ "a" (LOOKAHEAD(2) "b" "0" | "b" "1")

}

CPS710 JAVACC PARSING 3

Solution 3 – full factoring
void S() :

{}

{ "a" "b"("0"|"1")

}

• Compare and discuss backtracking.

Syntactic Lookaheads

• Example:

void S() :

{}

{ ("a")+ "0"

| ("a" | "b")+ "1"

}

Don't know how many letters to look ahead

• Solution:

void S() :

{}

{ LOOKAHEAD(("a")+ “0”) ("a")+ "0"

| ("a" | "b")+ "1"

}

• How much can it lookahead?

− Possibly the entire program

− VERY COSTLY → AVOID!!!

− Very few non-terminals in the assignment need them.

• In reality your program would probably look like this:

void S() :

{}

{ lots_of_as_then_0()

| as_and_bs() "1"

}

void lots_of_as_then_0 () :

{}

{ ("a")+ "0"}

void as_and_bs() :

{}

{ ("a" | "b")+

}

CPS710 JAVACC PARSING 4

You may not notice until JavaCC tells you about a choice conflict in S.

→ resolution:

void S() :

{}

{ LOOKAHEAD(lots_of_as_then_0 ()) lots_of_as_then_0 ()

| as_and_bs() "1"

}

• Where to put the syntactic lookahead?

− where you expect the shortest matching string, or the most likely string

to be matched correctly so there is no need to backtrack.

Lookahead-only Productions

• Example

void declaration() :

{}

{ LOOKAHEAD(fn_declaration()) fn_declaration()

| fn_definition()

| other_declaration()

}

void fn_definition():

{}

{ type() <IDENTIFIER> "(" parameters() ")" "{" body() "}"

}

void fn_declaration():

{}

{ type() <IDENTIFIER> "(" parameters() ")" ":" package()

";"

}

Don't want to read entire definition or declaration to decide which it is.

→ define a production simply for looking-ahead:
void fn_decl_lookahead():

{}

{ type() <IDENTIFIER> "(" parameters() ")" ":"

}

void declaration() :

{}

{ LOOKAHEAD(fn_decl_lookahead()) fn_declaration()

| fn_definition()

| other_declaration()

}

