
1

CPS109 Lab 2

Source: Big Java, Chapter 2
Preparation: read Chapter 2 and the lecture notes for this week.

Objectives:
1. To practice using variables
2. To practice creating objects
3. To practice calling methods, using parameters and return values
4. To practice browsing the java API documentation
5. To see the difference between objects and object references

Instructions:
The lecture notes indicate that you should do the following exercises from Big Java: Exercises 
P2.1, P2.2, P2.3, P2.7, P2.8, P2.9, P2.10.  In this lab we lead you through those exercises and 
discuss them with you.  The parts you must hand in are to be collected in a file called 
lab2.txt and submitted to your TA as you did with lab1.  Be sure to include your name at the 
top of your submission.  You can consult with your colleagues and the TA regarding how to do 
the lab, but what you submit must be your own individual work.  Academic integrity is taken 
very seriously at Ryerson.  See the course management form for more information.  

1. Exercise P2.1. Write an AreaTester program that constructs a Rectangle object and 
then computes and prints its area. Use the getWidth and getHeight methods. Also 
print the expected answer.

Discussion: This question could sound intimidating if you had not already read Chapter 2. 
There you learn that the Rectangle class is defined in the Java class library, in particular, in 
java.awt. To use that class, you must first import it, as shown in the MoveTester program 
of Chapter 2, shown below.  When you are learning to program, most programs that you write 
will closely follow some model.  In Lab 1, the model was the HelloWorld program, which 
introduced the static method main which is used to start all stand alone applications, and 
the method println of the class java.io.PrintStream, of which System.out is an object.  In 
this lab the model is the MoveTester program, which shows you how to import the 
Rectangle class, how to make a Rectangle object, how to invoke a method on the Rectangle 
object, and how to test your program by printing out what you expect the answer will be.

Step 1: Cut and paste the MoveTester program into an editor (as you did with the HelloWorld 
program in lab1).  
Step 2: Make the name of the file match the name of the class, i.e., call the file 
MoveTester.java. 
Step 3: Compile and run the program.  This much should work, since it is a program 
prepared and tested already.  So far you have just reviewed how to use the compiling 
environment that you have chosen.  Look at the output and understand what the program 
has done and why the test output matches the expected output.
Step 4: Cut and paste MoveTester into AreaTester.java.  Exactly how you do this depends 
on your environment, as discussed in lab 1.  Try to compile the program, and as you might 



2

expect, it does not compile, even though it did a moment ago in MoveTester.java.  This is 
where you have to start changing things to make it do what you want.

/**
     A program which creates a Rectangle object and translates it.
     The program illustrates calling a method, printing a value and printing 
     what you expect the value to be, so that you can check it.
     @author Cay Horstmann
*/
import java.awt.Rectangle;

public class MoveTester
{
   public static void main(String[] args)
   {
      Rectangle box = new Rectangle(5, 10, 20, 30);

      // Move the rectangle
      box.translate(15, 25);

      // Print information about the moved rectangle
      System.out.print("x: ");
      System.out.println(box.getX());
      System.out.println("Expected: 20");

      System.out.print("y: ");
      System.out.println(box.getY());
      System.out.println("Expected: 35");   }
}

Step 5: The first thing to change, if you have not done so already, is the name of the class, 
from MoveTester to AreaTester.  Once you have done that, the program should compile 
and run as before.  It just does not do what we want for P2.1.  If you keep making small 
changes followed by compile and run, you will not stray into the dark woods of a program 
that has a million errors.  
Step 6: Change the comment at the top to something simple, like Solution to P2.1. 
Change the @author line to replace Cay Horstmann with your name.  Now make changes 
inside the main method so that the program becomes a solution to P2.1.  For example, you 
could change the comment // Move the rectangle to something like // Calculate the area. 
Then replace box.translate(15, 25) with a line like double area = box.getWidth() * 
box.getHeight().  Finally change the print statements so that you print out the area and 
what you expect the area to be.  
Step 7: Compile and run the program and check that the calculated area matches the value 
you expected.  If it matches, copy and paste your program to lab2.txt as your answer to 
question 1.  If it does not match, figure out and fix your error and repeat this step.  



3

2. Exercise P2.2. Write a PerimeterTester program that constructs a Rectangle object 
and then computes and prints its perimeter. Use the getWidth and getHeight 
methods. Also print the expected answer.

Since you solved question 1, you can repeat those steps, perhaps now using AreaTester as 
your new model for making PerimeterTester.java.  The problem is so similar to the first 
problem, you might wonder what is the point – you already get the idea.  The point is 
practice.  Treat programming like a sport or language that you practice to improve your 
facility and coordination.   Programming is 10% understanding and 90% practice.  When you 
are done this question you will have pasted your solution into lab2.txt.

3. Exercise P2.3. Write a program called FourRectanglePrinter that constructs a 
Rectangle object, prints its location by calling System.out.println(box), and then 
translates and prints it three more times, so that, if the rectangles were drawn, they 
would form one large rectangle.

The model for this program could be MoveTester.  If we keep the line Rectangle box = 
new Rectangle(5, 10, 20, 30);  then picture the box as being at position x = 5, y = 10 with 
width 20 and height 30.  You confirm that by a line System.out.println(box), as suggested. 
Now, translate the box to the right by its width so that the original box and the translated box 
are side by side.  The call would be box.translate(20, 0), followed by another printing of 
the box.  Do something similar two more times so that the box is translated down by its 
height and then to the left by its width.  Compile and run your program, checking the output 
to confirm that it is what you explect.  Paste your solution into lab2.txt.

4. Exercise P2.7. The Random class implements a random number generator, which 
produces sequences of numbers that appear to be random. To generate random 
integers, you construct an object of the Random class, and then apply the nextInt 
method. For example, the call generator.nextInt(6) gives you a random number 
between 0 and 5. Write a program DieSimulator that uses the Random class to 
simulate the cast of a die, printing a random number between 1 and 6 every time that 
the program is run.

/**
   Solution to P2.7 using the Random class.
   @author put your name here
 */
import java.util.Random ;

public class DieSimulator
{
    public static void main(String[] args)
    {
        Random generator = new Random() ;



4

        //todo: change the following line
        System.out.println("Hello World") ;
    }
}

To speed things up for you I have given you the model.  You only need to change one line. 
Compile and run it to see that it generates a different random number each time.  Paste your 
program into lab2.txt.

5. Exercise 2.8.  Use your answer to P2.7 as a model to write a program that picks a 
combination in a lottery.  The combination consists of 6 numbers from 1 to 49, such as 
5, 42, 3, 1, 49, 42.  Note that numbers can repeat and that 0 is not allowed.  Since the 
generator.nextint(48) would give you a random value from 0 to 48, you would add 1 to 
that to make a value from 1 to 49.  Print out a sentence such as “Play this combination
—it'll make you rich!”, followed by the 6 random numbers separated by commas. After 
testing it, append your solution to lab2.txt.

6. Exercise 2.9.  Chapter 2 discussed the replace method of the String class, defined as 
public String replace(String target, String replacement).  It gave some example 
calls, such as river.replace(“p”, “s”), where river is a String variable.  Suppose you 
want to check whether this method replaces the first “p” with “s”, or does it replace 
all occurrences of “p” with “s”.  To make this check, you could try it out, or you could 
look it up in the Java Application Programming Interface (API).  Open a browser and 
enter the URL (uniform resource locator) 
http://java.sun.com/javase/6/docs/api/index.html to go to the Java documentation for 
Standard Edition 6.  You will see three panels in the browser window.  In the top left 
panel, find and click on java.lang which is the part of the library that contains the 
String class.  The java.lang collection of classes is always available to you without 
using the import statement.  In the lower left panel find and click on the String class. 
Now in the right panel, under the Method Summary section, find the method String 
replace(CharSequence target, CharSequence replacement).  Oh, well, it 
has CharSequence in place of String, but for now, assume that String behaves like a 
CharSequence, which it does. As your answer to this question, copy and paste the 
description of the method from the java API to lab2.txt.  The program that we are 
supposed to write for this question encodes a string by replacing all letters “i” with “!” 
and all letters “s” with “$”.  The program is given below for you to compile and try. 
You will find that it has a bug.  Fix the bug and append the program to lab2.txt.

/**

   Solution to P2.8 using the replace method

   @author put your name here

 */

public class Encoder

http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/java/lang/CharSequence.html
http://java.sun.com/javase/6/docs/api/java/lang/CharSequence.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replace(java.lang.CharSequence, java.lang.CharSequence)


5

{

    public static void main(String[] args)

    {

        String river = "Mississippi" ;

        String encoding = river.replace("i", "!") ;

        encoding = river.replace("s", "$") ;

        System.out.println(encoding) ;

        System.out.println("Expect: M!$$!$$!pp!") ;

    }

}

7. Exercise P2.10.  Use the above Encoder program as a model to make a program that 
switches the letters “e” and “o” in a string.  Note that you do not want to undo 
changes that made with the first replacement.  Demonstrate that the string “Hello, 
World!” turns into “Holle, Werld!”.  Append your program to lab2.txt and send lab2.txt 
to your TA.


