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Abstract— In the rapidly growing field of Big Data, we note 

that a disproportionately larger amount of effort is being invested 
in infrastructure development and data analytics in comparison 
to applications software development – approximately a 80:20 
ratio. This prompted us to create a context model of Big Data 
Software Engineering (BDSE) containing various elements — 
such as development practice, Big Data systems, corporate 
decision-making, and research — and their relationships. The 
model puts into perspective where various types of stakeholders 
fit in. From the research perspective, we describe example 
challenges in BDSE, specifically requirements, architectures, and 
testing and maintenance. 

Index Terms—Big Data, Applications, Software Engineering, 
Context model, Research challenges.  

I. INTRODUCTION  
The Big Data technology and services market is expected to 

grow at a compound annual rate of 27% from $9.8 billion in 
2012 to $32.4 billion in 2017, leading to multi-fold increase in 
the amount of technical data generated [1]. In this hurricane of 
data, the technical and business communities are getting sucked 
into the eye of data analytics and Big Data infrastructures [1] 
blurring the inevitable need to develop end-user applications 
utilising Big Data in a wide varieties of application domains – 
the so-called Big Data Software Engineering (BDSE). This bias 
is evident in the frequency count of vacant Big Data positions 
in the first one hundred job entries on Google search: 76% in 
infrastructures and analytics against only 22% in application 
software (and approx. 10% other)1 – let us say a 80:20 ratio.  

There is no theoretical reason to support this bias given that 
BDSE systems can also yield new insights that can possibly aid 
in furthering institutional or corporate goals and objectives.  
This lopsided situation, in part, has prompted us to hold our 
position that there is a need to depict a Big Data environment 
as a context model (the so-called Big Picture of BDSE), 
containing elements (such as application development) and 
relationships with data analytics among others, so as to better 
understand the dynamics involved.  

Such an understanding is anticipated to help in at least two 
ways: (a) in organisational structuring with appropriate agent 
roles, processes, and relationships among the interacting 

                                                             
1 Total exceeds 100% due to overlapping areas of positions. 

elements in the Big Data environment, and (b) in precipitating 
research in targeted areas of the Big Data environment. In this 
paper, we focus on (b) because this is a workshop paper and the 
field is in its infancy. 

The context model is described in the next section. We then 
pick example areas of the model to highlight research 
challenges (in requirements, architecture, and testing) in the 
development of Big Data applications. 

II. A CONTEXT MODEL OF BDSE 
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Figure 1 – A context model of Big Data Software 

Engineering 
 
Figure 1 depicts a context model for BDSE. Let us start 

with the top right quadrant of the figure. Historical data or 
streamed data are used in analytics to address business 
objectives, the results of which are used for business decision-
making. We assume that business objectives are relayed to the 
data analysts as requirements (not shown in the figure). Also, to 
carry out analytics, tools (such as Apache Mahout [2] and 
0xdata H2O [3] data mining and machine learning frameworks) 
and infrastructure (such as one of the Amazon Web Services 
[4] or IBM Netezza appliances [5]) are utilised. This is where 
significant current-day excitement is in industry, judging by job 
demands. 



The centerpiece of the proposed model is the centre-left 
“blob” where BDSE practice takes place to develop, maintain 
and evolve end-user Big Data applications. Be it agile, 
iterative, or evolutionary process models, this is where 
requirements are discovered, analysed and prioritised, 
application systems are architected, designed, developed, tested 
and integrated into suitable products, systems, and services.  

While methodologically this is all familiar from traditional 
software engineering (SE) (see SWEBOK [6]), new challenges 
emanate from having to deal with the characteristics of Big 
Data in specific SE tasks: e.g., data needs to be processed in 
real-time else incoming data could become lost and/or obsolete 
(velocity); mountain-ranges of historical data may exist 
(volume) and the end-user application system needs to be 
scalable to be able to cope with increasing size; data can be 
structured or unstructured (variety) and needs to be associated 
or aggregated in innovative ways to create new value for 
business; historical or streams of data may need to be cleaned 
up prior to analysing it (veracity); etc.  

Given such a data centred environment, how do you specify 
requirements for an end-user system that utilise such data? 
How do you architect a system, or which reference architecture 
to select, for processing a deluge of wild data? Likewise for 
detailed design models and simulation, coding, testing, 
integration, etc. The software lifecycle is plagued with Big 
Data concerns at all stages of development, maintenance, and 
evolution of a Big Data application system. This presents new 
research challenges and, likewise, opportunities. 

The model in Figure 1 shows that developed systems and 
services are deployed in the context of use (e.g., a financial 
sector), where a never-ending amount of data – historical or 
live -- is processed to yield value to the stakeholders (e.g., for 
corporate decision-making). Yet, wisdom tells us that the 
requirements for building end-user applications must come, in 
large measure, from stakeholder input (e.g., business 
scenarios); otherwise, the resultant systems (a) may not have 
desirable usability qualities and (b) when used may not yield 
desirable business or stakeholder value. We assume that 
customer and end-users, not explicitly shown, are represented 
in the BDSE “blob” (e.g., during requirements gathering, 
architecting, acceptance testing, etc.). 

Of course, practice without research may soon run into 
trouble. This is why the big picture of BDSE in Figure 1 
includes, for illustrative purposes, two core research areas 
(computer science (CS) and SE research) where 
experimentation on faster, better and cheaper Big Data 
concepts, models, methods, techniques, tools and processes 
takes place. The fruits of research are put into BDSE practice 
so as to create new or improved Big Data end-user 
applications, within budget and on time. 

The reader is cautioned that this model is not to be taken as 
a dogma. It is meant to illustrate a theoretical context for BDSE 
and data analytics because neither of them exists in vacuum. 
There are immediate needs to operate on historical data (e.g., 
patient records) for which data analytics seem to offer a 
solution. Yet, there are possible new opportunities for which 
innovative end-user applications can transform the way we 

conduct businesses and operations. For this, new applications 
need to be developed, maintained and evolved -- data analytics 
alone may not suffice. Thus, BDSE and data analytics 
complement each other. 

Furthermore, we consider that there are important analogies 
between software engineering for Big Data applications and 
system engineering issues. More specifically, software 
engineering of Big Data systems amalgamates with system 
engineering, as software on the system is often tailored to the 
hardware. This is especially pronounced with Big Data 
appliances (e.g., those offered by IBM Netezza, Oracle, and 
Teradata). For example, IBM Netezza appliances contain 
specialized hardware accelerators (S-Blades [5]) for data 
filtering and aggregation. Thus, any development of data 
processing software needs to take such accelerators into 
account. Another example is implementation of Deep Learning 
algorithms using cluster of GPU computation nodes; again 
software under development should take hardware constraints 
into account. Even if one builds a solution using infrastructure 
as a service (IaaS) offering, such as Amazon or Google web 
services, one has to take into account the topology of virtual 
computation nodes, limitations of available databases (such as 
Amazon Redshift or Google BigQuery), etc. Such services 
typically offer specialized API, which, on one hand ensures 
optimal performance of the system and, on the other, “locks” 
clients in a given business offering, making transition to a 
different vendor challenging. 

III. ILLUSTRATIVE RESEARCH CHALLENGES  
With reference to Figure 1, due to space limitation, we 

sketch selected research challenges that exist in BDSE. The 
purpose here is only one of raising awareness. While this paper 
does not offer solutions, we anticipate that recognition of 
challenges will promulgate solutions building. Section A 
focuses on requirements engineering (RE); Section B on 
reference architectures; and Section C on testing and 
maintenance.  

A. Requirement Engineering  
(1) Big Data characteristics: Engineering requirements for an 
application involves such key activities as: creating and 
understanding models of the application domain, eliciting use-
case scenarios and requirements from stakeholders and from 
other sources, developing functional and behavioural models, 
analysis, prioritisation, and validation [7]. The characteristics 
of the real-world elements (e.g., dimensions, weight, cost, 
transfer rates, and loudness) just to name a few, that are 
relevant for the application being developed, should be 
representable in software along with the logic (operations) 
acting upon them.  

For example, when eliciting behavioural scenarios of 
desirable system responses, the characteristics of Big Data 
elements (such as volume, velocity, variety, etc.) must be 
representable in requirements notations so that solution design 
can be created to meet the specifications.  This is analogous to 
other relevant domain requirements, such as communication, 



safety, privacy, performance, reliability, ease of use, 
personalisation, etc. [8]. 

Currently, however, RE for Big Data applications is an 
emerging area. A clearer understanding is needed, separating 
requirements for infrastructures, analytic tools and techniques, 
and end-user applications. Confusion abounds in job 
descriptions on the web. While the former two areas are 
becoming entrenched in the technology domain, relatively little 
is known about RE for end-user applications using Big Data. 

For example, how should a requirements analyst exploit 
video footage of a recently arrived customer in a department 
store, in conjunction with possible previous experiences in the 
store, so as to offer, in real-time, personalised and time-
sensitive discounts to this customer, at specific points of 
displays along the route where the customer would potentially 
be shopping for items? Here, we can clearly see that the 
software system needs to address all the popular Big Data 
characteristics – the so-called “4Vs”. 
(2) Multi-Peak processes: New underlying technologies (such 
as granular computing, cloud computing, biological computing 
and quantum computing [9]) have a variety of capabilities for 
information and knowledge processing (e.g., data abstraction, 
distribution, storage, high processing power, etc.), facilitating 
technologists to create specific libraries and frameworks for 
operating on Big Data elements (e.g., comparing multiple live 
videos concurrently), thereby, enabling requirements engineers 
to elicit (specify, analyse, prioritise, validate, negotiate, etc.) 
requirements more directly compatible with the end-user Big 
Data application domains. 

For example, instead of specifying basic image 
requirements and detailed image-processing requirements, 
analysts can focus on more abstract or real-world requirements 
(e.g., “if person walking into the store has been here 
before...”). Accordingly, the solution can focus on the speed 
with which streamed images can be compared and be linked to 
behavioural data associated with matching images in the 
image-base. Note that this complements component-based 
requirements engineering (CARE) [10]. 

Such abstraction encourages or necessitates closer, agile 
cooperation between the end-user, requirements analysts, 
architects, technologists, testers and other stakeholders in 
decision-making at the front-end of a Big Data applications 
development project – the so-called Multi-Peak processes 
crossing traditional process boundaries.  Clearly, this calls for 
recasting monolithic RE processes in traditional SE as an 
integrated set of agile processes (end-user, RE, SA, Testing, 
etc.) that exploit the underlying techniques and technologies for 
rapid, more accurate, and lower cost development.  

B. Architectures 
While there are robust infrastructures for Big Data analytics 
(e.g., cloud deployments, map-reduce frameworks), there is 
limited work on the investigation of reference architectures 
and patterns for Big Data analytics applications and on how 
these reference architectures can be reified into concrete 
architectures and deployments. Large software organisations 
such as IBM, Oracle, and Microsoft, institutes such as NIST 

have started to investigate this issue. However, there is still 
work to be done on how these reference architectures can be 
mapped onto existing technologies, frameworks, and tools to 
yield optimal application deployments.  

Another issue that warrants investigation and poses 
research challenges is techniques to assess the impact of 
architectural design decisions on functional and more 
importantly, non-functional requirements [11] of Big Data 
analytics applications. Literature has a number of methods for 
assessing architectures, e.g., SAAM and ATAM by SEI. 
However, work is limited on techniques for assessing 
architectural design decisions in virtualised, distributed Big 
Data analytics environments. 

C. Testing and Maintenance: Representative Test System 
Big Data Systems (BDS) are complex solutions with many 
dynamic components, such as distributed computation nodes, 
networks, databases, middleware, and business intelligence 
layers. Any component can fail while interacting with others, 
resulting in crashing failure or operational quality degradation 
(e.g., performance, reliability, security) [12]. They are thus 
challenging to develop, test, and maintain. 

To validate changes (induced by test or maintenance 
activities) to a production BDS, ideally, the test system needs 
to be identical to the production system. Unfortunately due to 
the scale of BDS, this is physically and economically 
unfeasible.  

This raises a research question: how to build a 
representative test system using hardware and software 
resources that account for a fraction of the BDS production 
system? In order to address the question, we need to dissect the 
problem.  
 (1) Scaling down resources: The 1st sub-question (related to 
volume and velocity) is how to scale down the resources to 
produce realistic BDS test system? It is obvious that we need 
to reduce the amount of storage and computational resources. 
But how does this reduction affect software configuration? For 
example, if the test system has smaller amount of memory 
than production system, how much memory do we need to 
allocate to database engine installed on the test system? 
Certain practical hacks do exist: e.g., one can scale down 
database memory consumption while taking into account the 
ratio between production and test system size [13]. However, 
no general theory of scaling down software configurations 
(while retaining its representativeness to the production 
system) exists. 
(2) Scaling data representatively: The 2nd sub-question 
(dealing with variety) is how to scale data representatively? 
Data representation is about ensuring that the data used for 
testing is representative of the data processed in the production 
BDS. You want to ensure that data representation in test 
maintains the same relationship and meaning as in production, 
even when the total amount of data is less in test than 
production. There exist tooling, such as IBM InfoSphere 
Optim Test Data Management [14], that can sample/extract a 
subset of structured data from a relational database while 
maintaining data integrity. There exist tools for generating 
representative synthetic structured data (see [15] for review). 



However, no work seems to have been done on selecting or 
generating a representative subset of unstructured data (e.g., 
stored in NoSQL or NewSQL database engine). For example, 
if an analytic system is designed to extract topics from private 
messages posted via social network, can we synthesize 
representative messages, while still being able to obtain 
meaningful output from the analytic system? 
(3) Workload capture-replay: Finally, the 3rd sub-question 
(associated with volume and velocity) is how to capture 
workload on a production BDS and replay it on a test BDS? In 
particular, in the database area, there exist tools (such as IBM 
InfoSphere Optim Workload Replay [16] and Oracle Database 
Replay [17]) for capturing workloads on production system 
and replaying them on a test system to ensure accurate system 
testing. However, they focus on relational databases. There is 
now a need for tools that can capture intensive production 
workloads of BDS and replaying them on the test system in 
the presence of data obfuscation. Likewise, tools for other 
components of BDS, such as business intelligence layer are 
required. There is also a need for a general strategy for scaling 
down the workload. If, say, our test system is ten times smaller 
than the production system, does this mean that we should 
reduce (in terms of: number of concurrent connections, 
operations per unit of time, etc.) our workload by ten times 
too? 

IV. DISCUSSION AND SUMMARY  
Big Data is here to stay [1].  However, analysis shows a bias 
in favour of infrastructure and analytical tool development 
than in applications development for Big Data systems. 
Judging by the history of the general software industry, it 
would appear that, as the field of Big Data matures, the 
(approximate) 80:20 ratio described in the introduction 
section, will likely shift in favour of Big Data software 
engineering (BDSE) as applications development business 
proliferates and as fewer players solidify their market hold in 
infrastructure and tool support. 

This bias and the hurricane of activities in the area of Big 
Data technologies and analytics, unfortunately, has created a 
mental gap in the understanding of how various elements and 
relationships in the field of Big Data fit together. This 
motivated us to create a context model (see Figure 1) to fill the 
void. Among the benefits of such a model is that it gives a 
sense of belonging to various players (such as practitioners, 
organisations, clients, users, and researchers) as to where they 
fit in, in the field of Big Data. 

Still, this model is a result of only general observations of 
current dynamics in the field. By no means do we claim its 
completeness. No doubt, time will uncover its flaws, hopefully 
leading to its gradual evolution and improved interpretation 
and representation of the practices, research, user benefits, and 
the business of Big Data.   

Upon reflection on the model, this position paper has 
highlighted example research challenges in BDSE: 
requirements, architecture, and testing and maintenance sub-
areas. Space did not permit to elaborate on these or include 
other research challenges (e.g.: debugging, implementation 

designs, parallel infrastructure, linkage with business, 
deployment of applications and services, and research-practice 
link). Thus, one take-away from this paper is that BDSE for 
applications development is a fertile area for new research and 
practice. 
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