
Big Picture of Big Data Software Engineering
With example research challenges

Nazim H. Madhavji
Dept. of Computer Science

University of Western Ontario
London, Canada

madhavji@gmail.com

Andriy Miranskyy
Dept. of Computer Science

Ryerson University
Toronto, Canada
avm@ryerson.ca

Kostas Kontogiannis
Dept. of Electrical & Computer Eng.

National Technical University of Athens
Athens, Greece

kkontog@softlab.ntua.gr

Abstract— In the rapidly growing field of Big Data, we note

that a disproportionately larger amount of effort is being invested
in infrastructure development and data analytics in comparison
to applications software development – approximately a 80:20
ratio. This prompted us to create a context model of Big Data
Software Engineering (BDSE) containing various elements —
such as development practice, Big Data systems, corporate
decision-making, and research — and their relationships. The
model puts into perspective where various types of stakeholders
fit in. From the research perspective, we describe example
challenges in BDSE, specifically requirements, architectures, and
testing and maintenance.

Index Terms—Big Data, Applications, Software Engineering,
Context model, Research challenges.

I. INTRODUCTION
The Big Data technology and services market is expected to

grow at a compound annual rate of 27% from $9.8 billion in
2012 to $32.4 billion in 2017, leading to multi-fold increase in
the amount of technical data generated [1]. In this hurricane of
data, the technical and business communities are getting sucked
into the eye of data analytics and Big Data infrastructures [1]
blurring the inevitable need to develop end-user applications
utilising Big Data in a wide varieties of application domains –
the so-called Big Data Software Engineering (BDSE). This bias
is evident in the frequency count of vacant Big Data positions
in the first one hundred job entries on Google search: 76% in
infrastructures and analytics against only 22% in application
software (and approx. 10% other)1 – let us say a 80:20 ratio.

There is no theoretical reason to support this bias given that
BDSE systems can also yield new insights that can possibly aid
in furthering institutional or corporate goals and objectives.
This lopsided situation, in part, has prompted us to hold our
position that there is a need to depict a Big Data environment
as a context model (the so-called Big Picture of BDSE),
containing elements (such as application development) and
relationships with data analytics among others, so as to better
understand the dynamics involved.

Such an understanding is anticipated to help in at least two
ways: (a) in organisational structuring with appropriate agent
roles, processes, and relationships among the interacting

1 Total exceeds 100% due to overlapping areas of positions.

elements in the Big Data environment, and (b) in precipitating
research in targeted areas of the Big Data environment. In this
paper, we focus on (b) because this is a workshop paper and the
field is in its infancy.

The context model is described in the next section. We then
pick example areas of the model to highlight research
challenges (in requirements, architecture, and testing) in the
development of Big Data applications.

II. A CONTEXT MODEL OF BDSE

Application
Concept

Operational
Program

Views
(Predictive)

Evolving
Understanding
and Structure Theories, Models

Procedures, Laws
of Application and
System Domains Requirements

Analysis

Computational
Procedures

and
Algorithms Program

Definition

Program

Corporate
Management

Marketeers
Users

User Support
Project &
Process

Managers

Exogenous
Change

A" .

Corporate((
Decision.making(

Big(Data(SE(
prac5ce(

Big(Data(systems(&(services,(and(
Analy5cs((e.g.,(Financial(sector)(

CS(
research((
on(Big(
Data(

SE(research(on(Big(Data(
Environments(

Used"in"

U
se
d"
in
"

Used"in"

Deployed
"

applica0o
ns"

"

"and"serv
ices"

Used"for"
Business"
and"Client""
Scenarios"

Streamed/Historical(
data,(Technologies,((
Infrastructures,(etc.((

Used"in"

Figure 1 – A context model of Big Data Software

Engineering

Figure 1 depicts a context model for BDSE. Let us start

with the top right quadrant of the figure. Historical data or
streamed data are used in analytics to address business
objectives, the results of which are used for business decision-
making. We assume that business objectives are relayed to the
data analysts as requirements (not shown in the figure). Also, to
carry out analytics, tools (such as Apache Mahout [2] and
0xdata H2O [3] data mining and machine learning frameworks)
and infrastructure (such as one of the Amazon Web Services
[4] or IBM Netezza appliances [5]) are utilised. This is where
significant current-day excitement is in industry, judging by job
demands.

The centerpiece of the proposed model is the centre-left
“blob” where BDSE practice takes place to develop, maintain
and evolve end-user Big Data applications. Be it agile,
iterative, or evolutionary process models, this is where
requirements are discovered, analysed and prioritised,
application systems are architected, designed, developed, tested
and integrated into suitable products, systems, and services.

While methodologically this is all familiar from traditional
software engineering (SE) (see SWEBOK [6]), new challenges
emanate from having to deal with the characteristics of Big
Data in specific SE tasks: e.g., data needs to be processed in
real-time else incoming data could become lost and/or obsolete
(velocity); mountain-ranges of historical data may exist
(volume) and the end-user application system needs to be
scalable to be able to cope with increasing size; data can be
structured or unstructured (variety) and needs to be associated
or aggregated in innovative ways to create new value for
business; historical or streams of data may need to be cleaned
up prior to analysing it (veracity); etc.

Given such a data centred environment, how do you specify
requirements for an end-user system that utilise such data?
How do you architect a system, or which reference architecture
to select, for processing a deluge of wild data? Likewise for
detailed design models and simulation, coding, testing,
integration, etc. The software lifecycle is plagued with Big
Data concerns at all stages of development, maintenance, and
evolution of a Big Data application system. This presents new
research challenges and, likewise, opportunities.

The model in Figure 1 shows that developed systems and
services are deployed in the context of use (e.g., a financial
sector), where a never-ending amount of data – historical or
live -- is processed to yield value to the stakeholders (e.g., for
corporate decision-making). Yet, wisdom tells us that the
requirements for building end-user applications must come, in
large measure, from stakeholder input (e.g., business
scenarios); otherwise, the resultant systems (a) may not have
desirable usability qualities and (b) when used may not yield
desirable business or stakeholder value. We assume that
customer and end-users, not explicitly shown, are represented
in the BDSE “blob” (e.g., during requirements gathering,
architecting, acceptance testing, etc.).

Of course, practice without research may soon run into
trouble. This is why the big picture of BDSE in Figure 1
includes, for illustrative purposes, two core research areas
(computer science (CS) and SE research) where
experimentation on faster, better and cheaper Big Data
concepts, models, methods, techniques, tools and processes
takes place. The fruits of research are put into BDSE practice
so as to create new or improved Big Data end-user
applications, within budget and on time.

The reader is cautioned that this model is not to be taken as
a dogma. It is meant to illustrate a theoretical context for BDSE
and data analytics because neither of them exists in vacuum.
There are immediate needs to operate on historical data (e.g.,
patient records) for which data analytics seem to offer a
solution. Yet, there are possible new opportunities for which
innovative end-user applications can transform the way we

conduct businesses and operations. For this, new applications
need to be developed, maintained and evolved -- data analytics
alone may not suffice. Thus, BDSE and data analytics
complement each other.

Furthermore, we consider that there are important analogies
between software engineering for Big Data applications and
system engineering issues. More specifically, software
engineering of Big Data systems amalgamates with system
engineering, as software on the system is often tailored to the
hardware. This is especially pronounced with Big Data
appliances (e.g., those offered by IBM Netezza, Oracle, and
Teradata). For example, IBM Netezza appliances contain
specialized hardware accelerators (S-Blades [5]) for data
filtering and aggregation. Thus, any development of data
processing software needs to take such accelerators into
account. Another example is implementation of Deep Learning
algorithms using cluster of GPU computation nodes; again
software under development should take hardware constraints
into account. Even if one builds a solution using infrastructure
as a service (IaaS) offering, such as Amazon or Google web
services, one has to take into account the topology of virtual
computation nodes, limitations of available databases (such as
Amazon Redshift or Google BigQuery), etc. Such services
typically offer specialized API, which, on one hand ensures
optimal performance of the system and, on the other, “locks”
clients in a given business offering, making transition to a
different vendor challenging.

III. ILLUSTRATIVE RESEARCH CHALLENGES
With reference to Figure 1, due to space limitation, we

sketch selected research challenges that exist in BDSE. The
purpose here is only one of raising awareness. While this paper
does not offer solutions, we anticipate that recognition of
challenges will promulgate solutions building. Section A
focuses on requirements engineering (RE); Section B on
reference architectures; and Section C on testing and
maintenance.

A. Requirement Engineering
(1) Big Data characteristics: Engineering requirements for an
application involves such key activities as: creating and
understanding models of the application domain, eliciting use-
case scenarios and requirements from stakeholders and from
other sources, developing functional and behavioural models,
analysis, prioritisation, and validation [7]. The characteristics
of the real-world elements (e.g., dimensions, weight, cost,
transfer rates, and loudness) just to name a few, that are
relevant for the application being developed, should be
representable in software along with the logic (operations)
acting upon them.

For example, when eliciting behavioural scenarios of
desirable system responses, the characteristics of Big Data
elements (such as volume, velocity, variety, etc.) must be
representable in requirements notations so that solution design
can be created to meet the specifications. This is analogous to
other relevant domain requirements, such as communication,

safety, privacy, performance, reliability, ease of use,
personalisation, etc. [8].

Currently, however, RE for Big Data applications is an
emerging area. A clearer understanding is needed, separating
requirements for infrastructures, analytic tools and techniques,
and end-user applications. Confusion abounds in job
descriptions on the web. While the former two areas are
becoming entrenched in the technology domain, relatively little
is known about RE for end-user applications using Big Data.

For example, how should a requirements analyst exploit
video footage of a recently arrived customer in a department
store, in conjunction with possible previous experiences in the
store, so as to offer, in real-time, personalised and time-
sensitive discounts to this customer, at specific points of
displays along the route where the customer would potentially
be shopping for items? Here, we can clearly see that the
software system needs to address all the popular Big Data
characteristics – the so-called “4Vs”.
(2) Multi-Peak processes: New underlying technologies (such
as granular computing, cloud computing, biological computing
and quantum computing [9]) have a variety of capabilities for
information and knowledge processing (e.g., data abstraction,
distribution, storage, high processing power, etc.), facilitating
technologists to create specific libraries and frameworks for
operating on Big Data elements (e.g., comparing multiple live
videos concurrently), thereby, enabling requirements engineers
to elicit (specify, analyse, prioritise, validate, negotiate, etc.)
requirements more directly compatible with the end-user Big
Data application domains.

For example, instead of specifying basic image
requirements and detailed image-processing requirements,
analysts can focus on more abstract or real-world requirements
(e.g., “if person walking into the store has been here
before...”). Accordingly, the solution can focus on the speed
with which streamed images can be compared and be linked to
behavioural data associated with matching images in the
image-base. Note that this complements component-based
requirements engineering (CARE) [10].

Such abstraction encourages or necessitates closer, agile
cooperation between the end-user, requirements analysts,
architects, technologists, testers and other stakeholders in
decision-making at the front-end of a Big Data applications
development project – the so-called Multi-Peak processes
crossing traditional process boundaries. Clearly, this calls for
recasting monolithic RE processes in traditional SE as an
integrated set of agile processes (end-user, RE, SA, Testing,
etc.) that exploit the underlying techniques and technologies for
rapid, more accurate, and lower cost development.

B. Architectures
While there are robust infrastructures for Big Data analytics
(e.g., cloud deployments, map-reduce frameworks), there is
limited work on the investigation of reference architectures
and patterns for Big Data analytics applications and on how
these reference architectures can be reified into concrete
architectures and deployments. Large software organisations
such as IBM, Oracle, and Microsoft, institutes such as NIST

have started to investigate this issue. However, there is still
work to be done on how these reference architectures can be
mapped onto existing technologies, frameworks, and tools to
yield optimal application deployments.

Another issue that warrants investigation and poses
research challenges is techniques to assess the impact of
architectural design decisions on functional and more
importantly, non-functional requirements [11] of Big Data
analytics applications. Literature has a number of methods for
assessing architectures, e.g., SAAM and ATAM by SEI.
However, work is limited on techniques for assessing
architectural design decisions in virtualised, distributed Big
Data analytics environments.

C. Testing and Maintenance: Representative Test System
Big Data Systems (BDS) are complex solutions with many
dynamic components, such as distributed computation nodes,
networks, databases, middleware, and business intelligence
layers. Any component can fail while interacting with others,
resulting in crashing failure or operational quality degradation
(e.g., performance, reliability, security) [12]. They are thus
challenging to develop, test, and maintain.

To validate changes (induced by test or maintenance
activities) to a production BDS, ideally, the test system needs
to be identical to the production system. Unfortunately due to
the scale of BDS, this is physically and economically
unfeasible.

This raises a research question: how to build a
representative test system using hardware and software
resources that account for a fraction of the BDS production
system? In order to address the question, we need to dissect the
problem.
 (1) Scaling down resources: The 1st sub-question (related to
volume and velocity) is how to scale down the resources to
produce realistic BDS test system? It is obvious that we need
to reduce the amount of storage and computational resources.
But how does this reduction affect software configuration? For
example, if the test system has smaller amount of memory
than production system, how much memory do we need to
allocate to database engine installed on the test system?
Certain practical hacks do exist: e.g., one can scale down
database memory consumption while taking into account the
ratio between production and test system size [13]. However,
no general theory of scaling down software configurations
(while retaining its representativeness to the production
system) exists.
(2) Scaling data representatively: The 2nd sub-question
(dealing with variety) is how to scale data representatively?
Data representation is about ensuring that the data used for
testing is representative of the data processed in the production
BDS. You want to ensure that data representation in test
maintains the same relationship and meaning as in production,
even when the total amount of data is less in test than
production. There exist tooling, such as IBM InfoSphere
Optim Test Data Management [14], that can sample/extract a
subset of structured data from a relational database while
maintaining data integrity. There exist tools for generating
representative synthetic structured data (see [15] for review).

However, no work seems to have been done on selecting or
generating a representative subset of unstructured data (e.g.,
stored in NoSQL or NewSQL database engine). For example,
if an analytic system is designed to extract topics from private
messages posted via social network, can we synthesize
representative messages, while still being able to obtain
meaningful output from the analytic system?
(3) Workload capture-replay: Finally, the 3rd sub-question
(associated with volume and velocity) is how to capture
workload on a production BDS and replay it on a test BDS? In
particular, in the database area, there exist tools (such as IBM
InfoSphere Optim Workload Replay [16] and Oracle Database
Replay [17]) for capturing workloads on production system
and replaying them on a test system to ensure accurate system
testing. However, they focus on relational databases. There is
now a need for tools that can capture intensive production
workloads of BDS and replaying them on the test system in
the presence of data obfuscation. Likewise, tools for other
components of BDS, such as business intelligence layer are
required. There is also a need for a general strategy for scaling
down the workload. If, say, our test system is ten times smaller
than the production system, does this mean that we should
reduce (in terms of: number of concurrent connections,
operations per unit of time, etc.) our workload by ten times
too?

IV. DISCUSSION AND SUMMARY
Big Data is here to stay [1]. However, analysis shows a bias
in favour of infrastructure and analytical tool development
than in applications development for Big Data systems.
Judging by the history of the general software industry, it
would appear that, as the field of Big Data matures, the
(approximate) 80:20 ratio described in the introduction
section, will likely shift in favour of Big Data software
engineering (BDSE) as applications development business
proliferates and as fewer players solidify their market hold in
infrastructure and tool support.

This bias and the hurricane of activities in the area of Big
Data technologies and analytics, unfortunately, has created a
mental gap in the understanding of how various elements and
relationships in the field of Big Data fit together. This
motivated us to create a context model (see Figure 1) to fill the
void. Among the benefits of such a model is that it gives a
sense of belonging to various players (such as practitioners,
organisations, clients, users, and researchers) as to where they
fit in, in the field of Big Data.

Still, this model is a result of only general observations of
current dynamics in the field. By no means do we claim its
completeness. No doubt, time will uncover its flaws, hopefully
leading to its gradual evolution and improved interpretation
and representation of the practices, research, user benefits, and
the business of Big Data.

Upon reflection on the model, this position paper has
highlighted example research challenges in BDSE:
requirements, architecture, and testing and maintenance sub-
areas. Space did not permit to elaborate on these or include
other research challenges (e.g.: debugging, implementation

designs, parallel infrastructure, linkage with business,
deployment of applications and services, and research-practice
link). Thus, one take-away from this paper is that BDSE for
applications development is a fertile area for new research and
practice.

ACKNOWLEDGMENTS
The authors are very grateful to Ibtehal Noorwali for the

groundwork on jobs data as well as on requirements scenarios.

REFERENCES
[1] D. Vesset, et al., “Worldwide Big Data Technology and

Services 2013–2017 Forecast,” IDC Market Analysis,
244979, Dec. 2013.

[2] “Apache Mahout”, https://mahout.apache.org/.
[3] “0xdata, H2O”, http://0xdata.com.
[4] “Amazon Web Services”, http://aws.amazon.com/.
[5] P. Francisco, IBM PureData System for Analytics

Architecture: A Platform for High Performance Data
Warehousing and Analytics. IBM, 2014.

[6] P. Bourque and R.E. Fairley, eds., Guide to the Software
Engineering Body of Knowledge, Version 3.0, IEEE
Computer Society, 2014.

[7] A. van Lamsweerde, Requirements Engineering: From
System Goals to UML Models to Software Specifications,
Wiley, 2009.

[8] L. Zhang, “A framework to model big data driven
complex cyber physical control systems,” in 20th Int.
Conf. on Autom. and Comp. (ICAC), 2014, pp. 283–288.

[9] C. L. Philip Chen and C.-Y. Zhang, “Data-intensive
applications, challenges, techniques and technologies: A
survey on Big Data,” Inf. Sci., vol. 275, pp. 314–347,
Aug. 2014.

[10] L. Chung, K. Cooper, and S. Courtney, “COTS-Aware
requirements engineering: The CARE process,” in Proc.
of Int. Wkshp. on Req. Eng. on COTS (RECOTS), 2004.

[11] R. Ferrari, J. A. Miller, and N. H. Madhavji, “A
controlled experiment to assess the impact of system
architectures on new system requirements,” Requir. Eng.,
vol. 15, no. 2, pp. 215–233, Mar. 2010.

[12] A. Mockus, “Engineering Big Data Solutions,” in Proc. of
the on Future of Software Engineering, 2014, pp. 85–99.

[13] A. V. Miranskyy and E. Cialini, “Scaling of DB2 for
Linux, UNIX, and Windows memory-related
configuration parameters on a test system.” IBM
developerWorks, 2011.

[14] “IBM - Infosphere Optim Test Data Management”,
http://www.ibm.com/software/products/en/infosphere-
optim-test-data-management.

[15] A. Alexandrov, C. Brücke, and V. Markl, “Issues in Big
Data Testing and Benchmarking,” in Proc. of the 6th Int.
Wkshp. on Testing Database Systems, 2013, pp. 1:1–1:5.

[16] C. Whei-Jen, et al., Getting Started with IBM InfoSphere
Optim Workload Replay for DB2. IBM Redbooks, 2015.

[17] Y. Wang, et al., “Real Application Testing with Database
Replay,” in Proc. of the 2nd Int. Wkshp. on Testing
Database Sys., 2009, pp. 8:1–8:6.

